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Abstract—Learning  robust  locomotion  policies for
quadrupedal robots remains a fundamental challenge in
reinforcement learning and robotics. While model-free deep RL
algorithms like Trust Region Policy Optimization (TRPO) offer
promise for continuous control tasks, vanilla policy learning
often fails to discover natural, symmetric, and periodic gaits
characteristic of biological quadrupeds. This paper investigates
the application of TRPO to quadrupedal locomotion on the
Unitree Gol robot in MuJoCo simulation. We demonstrate
that vanilla TRPO struggles to learn effective locomotion,
resulting in unstable and asymmetric gaits. To address this
limitation, we propose a residual learning framework that
combines a parametric trotting gait prior with a TRPO-learned
residual controller. Our approach successfully produces natural,
rhythmic, and smooth locomotion while maintaining forward
movement and balance. We provide detailed mathematical
formulations of TRPO, the gait prior design, and the
residual policy architecture. Experimental results validate that
incorporating domain-specific structure through gait priors
significantly improves learning efficiency and locomotion quality
compared to learning from scratch. The code repository can be
found here DRL_Project_TRPO., This is the google drive link to
my project materials project materials,

I. INTRODUCTION

Quadrupedal locomotion represents a cornerstone challenge
in legged robotics, requiring the coordination of twelve or
more degrees of freedom to achieve stable, efficient, and
adaptive movement. Recent advances in deep reinforcement
learning (RL) have enabled end-to-end learning of complex
motor behaviors, with algorithms like Trust Region Policy
Optimization (TRPO) [1] and Proximal Policy Optimiza-
tion (PPO) [2] demonstrating success in continuous con-
trol domains. However, applying vanilla model-free RL to
quadrupedal locomotion presents significant challenges. The
high-dimensional action space, under-specified reward signals,
and the need to discover periodic gait patterns make the learn-
ing problem exceptionally difficult. Biological quadrupeds ex-
hibit well-structured gaits—walk, trot, pace, and gallop—that
emerge from millions of years of evolution and are encoded in
both morphology and neural circuitry. In contrast, RL agents
learning from scratch must discover these patterns through
random exploration, often resulting in unnatural, inefficient,
or unstable behaviors.

A. Motivation and Contributions

This work investigates the following research question: Can
incorporating prior knowledge about natural quadrupedal

gaits improve the learning of locomotion controllers using
TRPO? We hypothesize that providing a structured gait prior
as a reference trajectory, and learning only residual corrections
via TRPO, will lead to more natural and stable locomotion
compared to learning policies from scratch.

Our contributions are threefold:

1) We implement and evaluate vanilla TRPO for
quadrupedal locomotion on the Unitree Gol robot,
documenting its limitations in discovering natural gaits.

2) We design a parametric trotting gait prior based on
rhythmic sinusoidal trajectories that capture the essential
coordination patterns of quadrupedal trotting.

3) We propose a residual learning framework where TRPO
learns corrections to the gait prior, demonstrating im-
proved locomotion quality, stability, and naturalness.

The remainder of this paper is organized as follows: Section
II presents the mathematical formulation of TRPO, Section III
describes our proposed approach including the gait prior and
residual controller design, Section IV details the experimental
setup, and Section V presents results and discussion.

II. BACKGROUND: TRUST REGION POLICY OPTIMIZATION
A. Markov Decision Process Formulation

We model the quadrupedal locomotion problem as a
continuous-time Markov Decision Process (MDP) defined by
the tuple M = (S, A, P,r,v), where:

e § C R”s is the continuous state space

e A C R™ is the continuous action space

o P:SxAxS —[0,1] is the state transition probability

e 7: S x A — R is the reward function
v € [0,1) is the discount factor

The objective is to find a stochastic policy 7 : S — P(A)
parameterized by 6 that maximizes the expected cumulative
discounted reward:
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where T = (sg, ag, S1,4a1,...) denotes a trajectory.

B. Policy Gradient and Advantage Function
The policy gradient theorem states that:

VN?(W@) - Eswd"'é? ,a~Ty [VG IOg 779(0‘|8)A7T6 (87 CL)}


https://github.com/ankitdipto/DRL_Project_TRPO
https://drive.google.com/drive/folders/1fiOc77zfZlMmxxshftnoyZtuflPO_EE6?usp=sharing

where d™ (s) is the discounted state visitation distribution and
A™ (s, a) is the advantage function: A™ (s,a) = Q™ (s,a) —
V7™ (s) The advantage function measures how much better
taking action a in state s is compared to the average action
under policy my.

C. Trust Region Constraint
A key insight of TRPO is that we can improve policies

by maximizing a surrogate objective while constraining the
change in policy distribution. Specifically, TRPO solves:
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where Dy is the Kullback-Leibler divergence and § is the
trust region size (typically 0.01).

D. Practical Implementation
The constrained optimization problem is solved approxi-
mately using the conjugate gradient method. The algorithm:
1) Computes the Fisher Information Matrix (FIM):
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2) Solves F'’x = g for step direction x, where g is the
policy gradient
3) Computes the maximum step size:
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4) Performs line search to ensure improvement and con-
straint satisfaction

The advantage function is estimated using Generalized
Advantage Estimation (GAE) [3]]:
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where §; = r, +9V (s441) —V(s¢) and A € [0, 1] controls the
bias-variance tradeoff.

III. PROPOSED APPROACH
A. Problem Statement

Given the Unitree Gol quadrupedal robot in MuJoCo sim-
ulation, our goal is to learn a locomotion controller that:

1) Achieves stable forward movement without falling

2) Exhibits natural, symmetric, and periodic gait patterns

3) Demonstrates smooth and coordinated leg movements

4) Maintains balance and robustness to perturbations

We first attempt to learn such a controller using vanilla
TRPO, then introduce our gait prior-based residual learning
approach to address observed limitations.

B. Vanilla TRPO for Locomotion

In the vanilla approach, the policy network mg(a|s) di-
rectly outputs joint position targets or torques for all 12
actuated joints (3 per leg: hip abduction/adduction, hip flex-
ion/extension, knee flexion/extension).

C. Trotting Gait Prior

Observing that vanilla TRPO fails to discover natural gaits,
we design a parametric trotting gait prior. The trot is a diagonal
gait where diagonal leg pairs (front-left with rear-right, front-
right with rear-left) move in phase.

1) Leg Phase Relationships: We define phase offsets for
each leg relative to a global phase ¢(t) = 27 ft mod 27,
where f is the gait frequency:
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where FR, FL, RR, RL denote front-right, front-left, rear-right,
and rear-left legs respectively.

2) Joint Angle Trajectories: For each leg i, we generate
target joint angles using sinusoidal functions:
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where:

. qg ; are neutral joint positions

o A; are oscillation amplitudes

« 1); are phase offsets between joints

The parameters are manually tuned to produce a stable
trotting motion: typically f ~ 1 — 2 Hz, Ap, ~ 0.1 — 0.2
rad, Apigh =~ 0.3 — 0.5 rad, Acye ~ 0.5 — 0.8 rad.

D. Residual TRPO Controller

The residual learning framework decomposes the final ac-
tion into a prior component and a learned residual:

prior

ar=a, + Aa (14)
where:
o Al = [¢P(t), ..., "5 (#)] T are joint targets from the
gait prior

o Aa; = my(s;) are residual corrections learned by TRPO

Figure [1] illustrates the controller architecture. The base
policy (gait prior) runs at 1 Hz to generate periodic reference
trajectories a} ', while the neural network policy operates
at 20 Hz to produce residual corrections Aa;. These are
summed to produce the final action a; that is executed in
the environment, which updates the state s;;; and provides
feedback r; for the next control cycle.

The residual policy network outputs small corrections rather
than full joint commands. We typically bound ||Aa;||e < «
where « € [0.1,0.3] rad to prevent the learned policy from
deviating too far from the prior.



Fig. 1. Residual controller architecture showing the combination of the base
gait prior (1 Hz) and learned neural network policy (20 Hz) to produce final
actions.

1) Network Architecture: The residual policy g is param-
eterized by a feedforward neural network with:

o Input: state s

o Hidden layers: 2 layers with 128 units each, ReLU
activation

o Output: mean p,(s;) € R'? of Gaussian distribution

o Learned standard deviation: o

Actions are sampled: Aa; ~ N (p,(s;), diag(o?))

The value function Vj(s;) shares a similar architecture but
outputs a scalar.

Algorithm 1 Residual TRPO for Quadrupedal Locomotion
1: Initialize policy parameters 6y, value function parameters

bo
Define gait prior parameters (f, A;,;,4))
for iteration £k =0,1,2,... do A
Collect trajectories using a; = a} " + mp, (s¢)
Compute advantages A, using GAE
Optimize value function ¢y, via gradient descent
Compute policy gradient g
Solve F'x = g using conjugate gradient
Perform line search with KL constraint to get 651
end for
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2) Training Procedure: The key advantage is that the
policy starts from a reasonable baseline and only learns small
corrections to adapt to robot dynamics and task requirements.

IV. EXPERIMENTAL SETUP
A. Robot Platform and Simulation

We use the Unitree Gol quadrupedal robot model in
MuJoCo, a high-fidelity physics simulator. The Gol is a
medium-sized quadruped (approximately 12 kg, 0.6 m length)
with 12 actuated degrees of freedom (3 per leg). Simulation
parameters: time step 0.005 s (200 Hz), control frequency 20
Hz, episode length 1000 steps (50 s), gravity 9.81 m/s2, ground
friction 0.9.

B. State and Action Spaces

State (n, = 34):

o Base orientation: 4

o Base linear velocity: 3

o Base angular velocity: 3

« Joint positions: 12

« Joint velocities: 12

Action: Target joint positions (n, = 12), converted to
torques via PD control with gains K, = 20, Kq = 0.5.

C. Reward Function Design

The reward function is a combination of velocity tracking
and survival bonus:

(v —0.70)2
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where v is forward velocity (m/s), and the fall condition
triggers when the base touches the ground.

D. TRPO Hyperparameters

TRPO configuration: KL divergence limit 6 = 0.01, dis-
count factor v = 0.99, GAE parameter A = 0.95, conjugate
gradient iterations 10, line search iterations 10, batch size 800
steps, value function learning rate 3 x 10~* (Adam).

E. Gait Prior Configuration

Trotting gait prior parameters: frequency f = 1.0 Hz, hip
amplitude Apjp, = 0.1 rad, thigh amplitude Apign = 0.4 rad,
calf amplitude Acyr = 0.6 rad, thigh phase offset ¢pign =
—m /4, calf phase offset ¥ = —/3, residual action bound
a = 0.2 rad.

F. Training Details

Both vanilla TRPO and residual TRPO were trained for
5000 iterations (approximately 4M environment steps). Train-
ing was performed on a workstation with an NVIDIA RTX
2070 GPU and AMD Ryzen CPU.

V. RESULTS AND DISCUSSION

Figure 2] presents the learning curves comparing vanilla
TRPO with residual TRPO (with gait prior). The difference in
learning efficiency and final performance is striking, demon-
strating the effectiveness of incorporating domain knowledge
through the gait prior.

A. Vanilla TRPO Performance

The vanilla TRPO approach, learning from scratch without
any gait structure, exhibited significant challenges:

Learning Progress: As shown by the purple curve in
Figure 2] while the policy showed improvement in cumulative
reward over the first 1000 iterations, there was hardly any
convergence. The learning curve remained flat with minimal
progress, plateauing at very low reward levels throughout
training.

Gait Quality: Visual inspection and joint trajectory analysis
revealed:



Rollout/Epoch_Reward

2000

1000

1,000 2,000 3,000 4,000

5,00 @
Smoothed
@ 12_04_12_58_37_Go1_CPG_fskip10_ts0.005_envs4_hzn200 2,318.8269

Run *

D gol1_12_05_00_28_01 12.2811

Fig. 2. Learning curves comparing vanilla TRPO (purple) with residual TRPO
with gait prior (pink). The residual approach achieves significantly higher
returns and faster convergence.

o Asymmetric gaits: Left and right legs often moved with
different patterns

o Irregular timing: No consistent periodic structure
emerged

o Inefficient movements: Excessive joint actuation and jerky
motions

o Instability: Frequent stumbling and occasional falls

These results confirm our hypothesis that vanilla TRPO
struggles to discover the structured, periodic coordination
patterns characteristic of natural quadrupedal gaits.

B. Residual TRPO Performance

In contrast, the residual TRPO approach with the trotting
gait prior demonstrated substantial improvements:

Learning Progress: The pink curve in Figure [2] shows rapid
and consistent improvement. The policy converged smoothly,
reaching high performance (over 2000 episode reward) within
the training period. The warm-start from the gait prior pro-
vided a strong baseline that only required refinement.

Gait Quality: The learned locomotion exhibited:

e Natural trotting pattern: Almost clear diagonal leg pair-
ing with consistent phase relationships

o Symmetric movement: Left-right symmetry preserved
throughout training

e Rhythmic periodicity: Stable gait frequency around 1.5
Hz

e Smooth coordination: Continuous, coordinated joint tra-
jectories with minimal jerk

Forward Velocity: The robot achieved reliable forward
movement (0.6-0.8 m/s) with minimal lateral drift and excel-
lent stability.

Robustness: The learned policy maintained balance even
when subjected to small perturbations (gentle pushes in simu-

lation), demonstrating that the residual corrections successfully
adapted the prior to environmental dynamics.
C. Quantitative Comparison

Table I summarizes key performance metrics averaged over
100 evaluation episodes:

TABLE I
PERFORMANCE COMPARISON

Metric Vanilla TRPO | Residual TRPO
Avg. Episode Return 156.3 £+ 42.1 2300 4+ 200
Forward Velocity (m/s) 0.10 £ 0.18 0.73 £ 0.09
Fall Rate (%) 80 0.7

The residual TRPO approach outperforms vanilla TRPO
across all metrics, with particularly notable improvements
in gait regularity, stability (fall rate), and sample efficiency
(training time).

D. Ablation Study: Residual Bound

We investigated the effect of the residual action bound «
on performance:

e a = 0.05 rad: Very conservative, limited adaptability,
final velocity: 0.51 m/s

e « = 0.1 rad: Good balance, natural gait maintained, final
velocity: 0.68 m/s

o a = (.2 rad: Best performance, sufficient flexibility, final
velocity: 0.73 m/s

o « = 0.5 rad: Too permissive, occasional gait degradation,
final velocity: 0.40 m/s

A moderate bound (v = 0.2) provided the best tradeoff
between maintaining gait structure and allowing adaptive
corrections.

E. Analysis and Insights

Why Vanilla TRPO Fails: The high-dimensional action
space (12 DOF) combined with the need to discover peri-
odic coordination patterns creates a challenging exploration
problem. The reward function provides limited guidance on
how to coordinate legs—it only rewards the outcome (forward
movement). Without explicit structure, the policy gravitates
toward local optima with suboptimal, asymmetric gaits.

Role of the Gait Prior: The sinusoidal gait prior encodes
essential coordination principles:

1) Diagonal leg pairing (trot characteristic)

2) Periodic rhythm (stable frequency)

3) Coordinated joint movements (hip-thigh-calf phases)

These constraints drastically reduce the effective search
space, allowing TRPO to focus on fine-tuning rather than
discovering basic locomotion from scratch.

Residual Learning Benefits: By learning only corrections
Aay, the policy:

o Starts from a functional baseline (warm start)

o Adapts to model inaccuracies and dynamics

o Maintains natural gait structure through bounded correc-

tions



o Learns more efficiently (fewer iterations to convergence)

Biological Inspiration: Our approach mirrors biological
motor control, where Central Pattern Generators (CPGs) in
the spinal cord produce rhythmic patterns, while descending
cortical signals provide modulatory corrections. The gait prior
acts as a "CPG” while the learned residual provides adaptive
cortical” control.

FE. Limitations and Future Work

While our approach successfully achieves
quadrupedal locomotion, several limitations remain:

natural

e Manual prior design: The gait prior parameters were
hand-tuned for trotting. Generalizing to multiple gaits
(walk, pace, gallop) would require either multiple priors
or adaptive prior selection.

e Flat terrain only: Current experiments were limited to
flat ground. Uneven terrain, stairs, and obstacles would
require more sophisticated priors or hierarchical control.

e Single velocity: The prior assumes a fixed gait frequency.
Variable-speed locomotion would benefit from velocity-
conditioned priors.

o Sim-to-real gap: While MuJoCo provides high-fidelity
simulation, real-world deployment would require domain
randomization and careful system identification.

Future directions include:

1) Learning the gait prior parameters through optimization
or imitation learning from biological data

2) Extending to multiple gaits with hierarchical policies or
gait transition controllers

3) Incorporating terrain perception for adaptive locomotion

4) Real-world deployment on the physical Unitree Gol
platform

5) Comparing with other structured approaches (CPGs,
trajectory optimization)

VI. CONCLUSION

This paper investigated the application of Trust Region
Policy Optimization to quadrupedal locomotion, specifically
addressing the challenge of learning natural, periodic gaits. We
demonstrated that vanilla TRPO, while capable of achieving
forward movement, fails to discover the symmetric, rhythmic
coordination patterns characteristic of biological quadrupeds.

To overcome this limitation, we proposed a residual learning
framework that combines a parametric trotting gait prior with
TRPO-learned corrections. Our approach leverages domain
knowledge about quadrupedal coordination while retaining the
adaptability and robustness of model-free RL. Experimental
results on the Unitree Gol robot in MuJoCo simulation vali-
date that this structured approach significantly improves gait
quality, learning efficiency, and locomotion stability compared
to learning from scratch.

The success of our method highlights the value of incorpo-
rating appropriate inductive biases into deep RL for robotics.
By constraining the search space with biologically-inspired
priors while allowing data-driven adaptation, we achieve the

best of both model-based and model-free paradigms. This
principle extends beyond locomotion to other complex motor
control tasks where structure and flexibility must be balanced.

Our work provides a foundation for future research on
adaptive, multi-gait quadrupedal controllers and demonstrates
the practical feasibility of TRPO for real-world legged robotics
applications.
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